OSSTEM IMPLANT SYSTEM

2012 PRODUCT CATALOG

for **SS IMPLANT SYSTEM**

Contents | OSSTEM IMPLANT

26 SSIII RBM Fixture		24 SSII RBM Ultra- Wide [®] Fixture	22 SSII RBM Fixture
31 Closing Screw		30 Cover Screw	30 SA aple Mount
35 Solid Lab Analog		Solid Impression Coping	34 Solid rotect Cap
37 Excellent Solid Abutment		36 Solid Shoulder Analog Pin	36 Solid Shoulder Analog
39 Excellent Impression Cap		38 Excellent Solid Plastic Coping	38 Excellent Solid Lab Analog
41 ComOcta Angled Abutment	1	40 ComOcta Plus Abutment	40 ComOcta Abutment
43 Fixture Lab Analog		43 Fixture Transfer Impression Coping	43 Fixture Pick-up Impression Coping
45 Octa Temporary Cylinder		45 Octa Combination Cylinder	44 Octa Id Cylinder
48 O-ring Abutment		47 Octa Lab Analog	47 Octa Transfer mpression Coping

3			
l	۶		
	đ	þ	
	0	5	
	U)	
-	U U)	

48 O-ring Abutment Set (Dalbo Set)	49 O-ring Retainer Cap Set €	49 O-ring Retainer Set	49 O-ring Set	O-ring Lab Analog	
51 LOCATOR [®] Abutment	51 LOCATOR [®] Male Processing Kit	51 LOCATOR [®] Replacement Male	52 LOCATOR [®] Extended Replacement Male	52 LOCATOR [®] Black Processing Male	
52 LOCATOR [®] Block out Spacer	52 LOCATOR [®] Impression Coping	52 LOCATOR [®] Lab Analog	LOCATOR [®] Core Tool	53 LOCATOR® Torque Driver	

OSSTEM HISTORY

2011		2007	
	Dec Introduces and commences commercial production of K2 Unit & Chair		Ma
	Nov Develops and begins commercial production of Smart Membrane	2006	Dec
	Oct Registers and obtains approval from Health Canada		
	Develops and begins commercial production of USII SA and 123 Kit		
	Sep Establishes subsidiary offices in Dacca , Bangladesh and Ho		Nov
	Chi Minh City, Vietnam [OSSTEM Bangladesh Ltd. and		Sep
	OSSTEM IMPLANT Vina Co., Ltd.]		A
	Begisters and obtains approval from the Ministry of Health		Auç
	and Society in Vietnam		
	Aug Establishes subsidiary offices in Manila, Philippines and		Jul
	Vancouver, Canada [OSSTEM Philippines Inc. and HiOssen		
	Implant Canada Inc.]		Apr
	Jul Develops and begins commercial production of CustomFit		
	Abutment		
	[OSSTEM IMPLANT LLP]		Jan
	Jun Develops and begins commercial production of TSII SA		
	Hosts 'OSSTEM World Meeting 2011 in Seoul'		
	Apr Develops and begins commercial production of LAS Kit	2005	
	Establishes subsidiary offices in Jakarta, Indonesia [PT		Dec
	OSSTEM Indonesia]		
	Mar Establishes subsidiary offices in Guadalajara, Mexico [HiOssen de Mexico]		Mar
	Feb Develops and begins commercial production of TSIV SA		Apr
2010			Ma
2010	Nov Develops and begins commercial productions of SSII SA		
	Aug Develops and begins commercial productions of TSIII Ultra-		Jan
	Jun Develops and begins commercial productions of TSIII HA and	0004	
	CAS Kit	2004	Nov
	Opens 'OSSTEM World Meeting 2010 in Beijing'		Jul
	Apr Develops and begins commercial productions of Osstem		Apr
	Guide	2002	
	Mar Develops and begins commercial productions of ISIII SA		Oct
2009	Oct Registers and obtains approval from Health, Labor and		Aug
	Welfare in Japan		Jan
	May Hosts 'OSSTEM World Meeting 2009 in Bangkok'	2001	
	Jan Certifies PEP7 (the world's first new Osseo-inductive		Ma
	compound)		
2008	Nov Develops and begins commercial productions of SS Liltra-		Jan
	wide	1999	Dec
	Jun Develops and begins commercial productions of GSIII	1997	
	Apr Holds 'OSSTEM World Meeting 2008 in Seou'	1557	Dec
	Mar Opens ATC Training Center		
	Jan Establishes OSSTEM Bone Science Institute		Jan
2007	Oct Establishes subsidiary offices in Sydney Australia [Osstem	1995	Dev
	Australia PTY Ltd.]	1000	200
	Jun Registers and obtains approval from the TGA in Australia	1992	Initi
	May Develops and begins commercial production of US Ultra-		
	wide		
	Apr Hosts 'OSSTEM World Meeting 2007 in Seoul'		
	Begins commercial production or v-ceph		

2007	Mar Develops and begins commercial production of MS	
	Lists on KOSDAQ (KRX: Korea Exchange)	
2006	Dec Establishes subsidiary offices in Bangkok, Thailand and Kuala Lumpur, Malaysia [OSSTEM Thailand Co., Ltd. and OSSTEM Malaysia	
	SDN, BHD]	
	Sep Establishes subsidiary office in Philadelphia, U.S.A [HiOssen	
	Aug Establishes subsidiary offices in Beijing, China / Singapore and Hong Kong [OSSTEM China Co., Ltd. / OSSTEM Singapore Pte Ltd. and OSSTEM Hong Kong Ltd.]	
	Jul Establishes subsidiary office in Tokyo, Japan [OSSTEM Japan	
	Apr Registers and obtains the GOST-R certification in Russia Opens 'OSSTEM World Meeting 2006 in Seoul' Publishes the "2006 OSSTEM IMPLANT SYSTEM	
	Introduction and particulars of implant system Jan Establishes the subsidiary offices in Moscow, Russia and Mumbai, India [OSSTEM LLC. and OSSTEM IMPLANT India Pvt Ltd.]	
2005	Dec Registers and obtains approval by the DOH in Taiwan Establishes the subsidiary office in Ashborn, Germany	
	[OSSTEM Germany GmbH] May Develops and begins commercial production of GSII	
	Apr Hosts 'OSSTEM World Meeting 2005 in Seoul' Mar Obtains KGMP(Korean Good Manufacturing Practice) in Korea	
	Jan Establishes the subsidiary office in Taipei, Taiwan [OSSTEM Corporation]	
2004	Nov Develops and begins commercial production of SSIII	
	Jul Develops and begins commercial production of USIII Apr Opens 'OSSTEM World Meeting 2004 in Seou'	
2002	Oct Develops and begins commercial production of SSII	
	Aug Registers and obtains approval by the FDA in the USA Develops and begins commercial production of USII Jan Establishes OSSTEM Implant R&D Center	
2001	Mar Establishes AIC(Apsun Dental Implant Research & Education	
	Center) Jan Obtains CE-0434 certification	
1999	Dec Obtains ISO-9001 certification	
1997	Dec Begins commercial production under the brand name of OSSTEM	
100-	Jan Establishes OSSTEM IMPLANT Co., Ltd. in Seoul, Korea	
1995	Develops dental implants and acquires industrial license	
1992	Initiates the development of dental implant system	

CHARACTERISTIC of OSSTEM IMPLANT SYSTEM

■SS System- Clinic

No.	Title	Reference	Author
1	Non-submerged type implant stability analysis during initial healing period by resonance frequency analysis	J Korean Acad Periodontol 2009;39:339-48	Kyoo-Sung Cho et al.
2	Prospective Clinical Trial of Survival Rate for Two Different Implant Surfaces Using the Osstem SS Non-submerged Implant System in Partially Edentulous Patients	J Kor Dent Sci. 2009;3(1):35-41	Su-Kwan Kim et al.
3	Evaluation of Peri-implant Tissue in Nonsubmerged DentalImplants: a Multicenter Retrospective Study	Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):189-95	Young-Kyun Kim et al.
4	A Randomized Clinical One-year Trial Comparing Two Types of Nonsubmerged Dental Implant	Accepted in 2009 for Publication in Clin Oral Impl Res	Jong-Ho Lee et al.
5	Evaluation of Sinus Bone Resorption and Marginal Bone Loss after Sinus Bone Grafting and Implant Placement	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e21-8	Young-Kyun Kim et al.
6	A Comparison of Implant Stability Quotients Measured Using Magnetic Resonance Frequency Analysis from Two Directions:Prospective Clinical Study during the Initial Healing Period	Accepted in 2009 for Publication in Clin Oral Impl Res	Jong-Ho Lee et al.
7	Four-year Survival Rate of RBM Surface Internal Connection Non- Submerged Implants and the Change of the Peri-Implant Crestal Bone	J Korean Assoc Maxillofac Plast Reconstr Surg 2009;31(3):237-42	Myung-Rae Kim et al.
8	Clinical Application of Osstem SS III Implant System	J Korean Dental Success 2009;29(8):829-37	In-Seong Jeon
9	A Retrospective Study on the Clinical Success Rate of OsstemImplant	Key Engineering Materials 2008;361-363:1331-4	Su-Kwan Kim et al.
10	Placement of Calcium Metaphosphate-coated Dental Implants in the Posterior Maxilla: Case Reports	Hosp Dent (Tokyo)2008;20(1):39-43	Su-Kwan Kim et al.
11	Multicenter Retrospective Study of Immediate Two Different RBM Surfaced Implant Systems after Extraction	J Korean Assoc MaxillofacPlast Reconstr Surg 2008;30(3):258-65	Hee-Kyun Oh et al.
12	A Retrospective Multicenter Clinical Study of Installed US II / SS II Implants after Maxillary Sinus Floor Elevation	J Kor Oral Maxillofac Surg 2008;34:341-9	Hee-Kyun Oh et al.
13	Clinical Retrospective Study of Sinus Bone Graft and ImplantPlacement	J Korean Assoc Maxillofac Plast ReconstrSurg 2008;30(3):294-302	Young-Kyun Kim et al.
14	Short term Retrospective Clinical Study on GS II, SS III, US III	J Korean Implantology(KAOMI) 2008;12(2):12-22	Young-Kyun Kim et al.
15	Resonance Frequency Analysis in Non-Submerged, Internal Type Implant with Sinus Augmentation Using Deproteinized Bovine Bone Mineral	J Korean Assoc Maxillofac Plast Reconstr Surg 2008;30(6):554-60.	Myung-Rae Kim et al.
16	Multicenter Retrospective Clinical Study of Osstem SS II ImplantSystem	J Korean Implantology(KAOMI) 2007;11(1):20-31	Young-Kyun Kim et al.
17	For whom? Immediate Implant: The Factors for Successful Immediate Implant	J Korean Cilnical Implant 2007;35(5):20-38	Jong-Jin Kwon et al.
18	Analysis of Clinical Application of Osstem (Korea) Implant System for 6 Years	J Korean Implantology(KAOMI) 2006;10(1):56-65	Young-Kyun Kim et al.
19	Multicentric Prospective Clinical Study of KoreanImplant System: Early Stability Measured by Periotest	J Korean Dent Assoc 2004;42(12):873-81	Young-Kyun Kim et al.

SS System- Biology

No.	Title	Reference	Author
1	A Short-term Study on Immediate Functional Loading and Immediate Nonfunctional Loading Implant in Dogs: Histomorphometric Evaluation of Bone Reaction	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:519-24	Su-Gwan Kim et al.
2	Peri-Implant Bone Reactions at Delayed and Immediately Loaded Implants: An Experimental Study	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:144-8	Byung-Ho Choi et al.
	Histologic Changes in the Maxillary Sinus Membrane after Sinus Membrane Elevation and the Simultaneous Insertion of Dental Implants without the Use of Grafting Materials	ral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e1-5	Byung-Ho Choi et al.
4	Effects of Sinus Membrane Elevation on Bone Formation around Implants Placed in the Maxillary Sinus Cavity: An Experimental Study	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:684-7	Byung-Ho Choi et al.
	Comparison of Submerged and Nonsubmerged Implants Placed without Flap Reflection in the Canine Mandible	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:561-5	Byung-Ho Choi et al.
6	Influence of Abutment Connections and Plaque Control on the Initial Healing of Prematurely Exposed Implants: An Experimental Study in Dogs	J Periodontol 2008;79(6):1070-4	Byung-Ho Choi et al.
7	Flapless Implant Surgery: An Experimental Study	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:24-8	Byung-Ho Choi et al.
8	Comparison of Corticocancellous Block and Particulate Bone Grafts in Maxillary Sinus Floor Augmentation for Bone Healing around Dental Implants	Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104(3):324-8	Byung-Ho Choi et al.
9	Comparative Study of Removal Effect on Artificial Plaque from RBM Treated Implant	J Korean Assoc Maxillofac Plast Reconstr Surg 2007;29(4):309-20	Hee-Jyun Oh et al.

SS System- Biomechanics

No.	Title	Reference	Author
1	Fatigue Characteristics of Five Types of Implant-Abutment Joint Designs	METAL AND MATERIALS International 2008;14(2):133-8	Tae-Sung Bae et al.
2	Influence of Tightening Torque on Implant-Abutment Screw Joint Stability	J Kor Acad Prosthodont 2008;46(4):396-408	Chang-Mo Jeong et al.
	Effect of Casting Procedure on Screw Loosening of UCLA Abutment in Two Implant-Abutment Conncetion Systems	J Kor Acad Prosthodont 2008;46(3):246-54	Myung-Joo Kim et al.
	A Study of SmartpegTM's Lifetime according to Sterilization for Implant Stability	J Kor Acad Prosthodont 2008;46(1):42-52	In-Ho Cho et al.
5	Influence of Tungsten Carbide/Carbon Coating of Implant-Abutment Screw on Screw Loosening	J Kor Acad Prosthodont 2008;46(2):137-47	Chang-Mo Jeong et al.
6	Evaluation of Stability of Double Threaded Implant-Emphasis on Initial Stability Using Osstell Mentor™; Part I	J Kor Acad Stomatog Func Occlusion 2007;23(4)	Yong-Deok Kim ea al.
	The Comparative Study of Thermal Inductive Effect Between Internal Connection and External Connection Implant in Abutment Preparation	J Kor Acad Prosthodont 2007;45(1):60-70	Sok-Min Ko et al.
8	Influence of Implant Fixture Design on Implant Primary Stability	J Kor Acad Prosthodont 2006;45(1):98-106	Seok-Gyu Kim et al.
9	Influence of Tungsten Carbide/Carbon on the Preload of Implant Abutment Screws	J Kor Acad Prosthodont 2006;44(2):229-42	Chang-Mo Jeong et al.
10	The Effect of Internal Implant-Abutment Connection and Diameter on Screw Loosening	J Kor Acad Prosthodont 2005;43(3):379-92	Kyung-Soo Jang et al.

OSSTEM Implant System Flow

SSIII SA

- Non-submerged type implant based on a one-stage surgery procedure
- Stable connection structure of internal octa and morse taper method
- SA surface morphology and roughness increased by45% compared to RBM treatment
- Taper body offers High initial stability
- Increase initial stability in soft bone
 Corkscrew thread : Powerful Self threading

SSIII RBM

- Non-submerged type implant based on a one-stage surgery procedure
- Stable connection structure of internal octa and morse taper method
- RBM surface with excellent bio-affinity
- Taper body offers High initial stability
- Increase initial stability in soft bone
- Corkscrew thread : Powerful Self threading

L:7 8.5 10 11.5 13 15

1-1

SS Prosthesis Library

OSSTEM INPLANT SYSTEM

SS System

Fixture and Restorative Components

1		ŧ

Prosthetic Flow Diagrams for SS System

Cement Retained Restoration : Solid Abutment • Regular, Wide

Prosthetic Flow Diagrams for SS System

Cement Retained Restoration : Excellent Solid Abutment • Regular, Wide

Prosthetic Flow Diagrams for SS System

Cement Retained Restoration : ComOcta, ComOcta Plus, ComOcta Angled, ComOcta Gold Abutment Screw Retained Restoration : ComOcta Gold Abutment, ComOcta Temporary Abutment • Regular, Wide

Prosthetic Flow Diagrams for SS System

Cement Retained Restoration : Hanaro Abutment • Regular, Wide

Prosthetic Flow Diagrams for SS System

Screw & Cement Retained Restoration : Octa Abutment • Regular, Wide

Prosthetic Flow Diagrams for SS System

Overdenture Restoration : O-ring / LOCATOR[®] Abutment • Regular

SSII SA Fixture

Simple Mount System

SSII SA Fixture Order Code

Fixture Only

- Fixture : Product Code (ex : SS2R4011S18)

Pre-Mounted Fixture (Simple Mount)

- Fixture + Simple Mount + Cover Screw : A + Fixture Product Code (ex : ASS2R4011S18)

Feature of SSII SA

- Non-submerged type implant based on a one-stage surgery procedure
- Stable connection structure of internal octa and morse taper method
- SA surface morphology and roughness increased by45% compared to RBM treatment
- SA : Sand blasted with alumina and Acid etched surface
 - Optimal morphology : Combination of crater and micro-pit
 - Optimal surface roughness : Ra $2.5{\sim}3.0{\scriptstyle\mu m}$
 - Early cell response : 20% faster than RBM
 - Early bone healing : 20% faster than RBM
 - Early loading possible after 6 weeks of placement.
 - Optimized design for SA surface
- Straight body facilitates the adjustment of implantation depth
- Powerful Self threading
- Limited insertion torque : 40Ncm

We recommend that the fixture with over 4.5mm diameter is used for single case in Molar.

* Note : Short implant require sufficient curing period and, in the process of prosthesis, should be used splinting with another implant.

OSSTEM IMPLANT SYSTEM

Р	ø 4.8	
D	ø 4.0	
L G/H	1.8	2.8
7	SS2R4007S18	-
8.5	SS2R4008S18	SS2R4008S28
10	SS2R4010S18	SS2R4010S28
11.5	SS2R4011S18	SS2R4011S28
13	SS2R4013S18	SS2R4013S28
15	SS2R4015S18	SS2R4015S28

Р	ø 4.8	
D	ø 4.5	
L G/H	1.8	2.8
7	SS2R4507S18	-
8.5	SS2R4508S18	SS2R4508S28
10	SS2R4510S18	SS2R4510S28
11.5	SS2R4511S18	SS2R4511S28
13	SS2R4513S18	SS2R4513S28
15	SS2R4515S18	SS2R4515S28

Р	ø 6.0	
D	ø 4.5	
L G/H	2.0	
7	SS2W4507S20	
8.5	SS2W4508S20	
10	SS2W4510S20	
11.5	SS2W4511S20	
13	SS2W4513S20	
15	SS2W4515S20	

Р	ø 6.0	
D	ø 5.0	
L G/H	2.0	
6 (Short)	SS2W5006S20	
7	SS2W5007S20	
8.5	SS2W5008S20	
10	SS2W5010S20	
11.5	SS2W5011S20	
13	SS2W5013S20	
15	SS2W5015S20	

SSII RBM Fixture

Pre-Mounted Fixture (Simple Mount)
- Fixture + Simple Mount + Cover Screw : A + Fixture Product Code (ex : ASS2R1808)

Pre-Mounted Fixture (Hanaro Abutment)

- Fixture + Hanaro Abutment + Cover Screw : H + Fixture Product Code (ex : HSS2R1808)

Features of SSII RBM Fixture

- Internal octa non-submerged fixture
- 0.8 [mm] pitched triangular screw offers excellent primary bonding and well-distributed masticatory force
- Connection with the superstructure exists inside the fixtures, causing absolutely zero shaking and preventing bone absorption
- Machined surface G/H (1.8/2.0/2.8) part offers bio-affinity with gingival tissue and facilitates plaque control
- Inclined tip shape enhances early penetration
- 4-bladed cutting edge with excellent self-tapping force
- RBM surface with excellent bio-affinity
- Limited insertion torque: 40 Ncm

* We recommend that the fixture with over 4.5mm diameter is used for single case in Molar

OSSTEM IMPLANT SYSTEM

Р	ø 3 .5	
D	ø 3.3	
L G/H	1.8	2.8
8.5	BSM1808	BSM2808
10	BSM1810	BSM2810
11.5	BSM1811	BSM2811
13	BSM1813	BSM2813
15	BSM1815	BSM2815

Р	ø 4.8	
D	ø 4.1	
L G/H	1.8	2.8
7	SS2R1807	-
8.5	SS2R1808	SS2R2808
10	SS2R1810	SS2R2810
11.5	SS2R1811	SS2R2811
13	SS2R1813	SS2R2813
15	SS2R1815	SS2R2815

Р	ø 4.8	
D	ø 4.8	
L G/H	1.8	2.8
7	SS2W1807	-
8.5	SS2W1808	SS2W2808
10	SS2W1810	SS2W2810
11.5	SS2W1811	SS2W2811
13	SS2W1813	SS2W2813
15	SS2W1815	SS2W2815

Р	ø 6.0	
D	ø 4.8	
L G/H	2.0	
7	SS2WP2007	
8.5	SS2WP2008	
10	SS2WP2010	
11.5	SS2WP2011	
13	SS2WP2013	
15	SS2WP2015	

SSII RBM Ultra-Wide[®] Fixture

Hex 1.2

SSII RBM Ultra-Wide[®] Fixture Order Code

Fixture Only

- Fixture : Product Code (ex : SS2WB62007A)

Pre-Mounted Fixture

- Fixture + Simple Mount + Cover Screw : A + Product Code (ex : ASS2WB62007A)

Features of SSII RBM Ultra-Wide Fixture

- Internal octa non-submerged wide diameter fixture
- Compatible with SS wide abutment components
- A fixture that is convenient to use in case of immediate insertion following posterior tooth extract socket and replacement of failed implants
- Connection with the superstructure exists inside the fixtures, causing absolutely zero shaking and preventing bone absorption
- Machined surface G/H(2.0) part offers bio-affinity with gingival tissue and facilitates plaque control
- Optimized apex design that enables gaining stable initial fixation even at 3 mm below the extract socket
- All RBM surfaces with excellent bio-affinity
- Limited insertion torque : 40 Ncm

OSSTEM IMPLANT SYSTEM

Р	ø 6.0	
D	ø 6.0	
L G/H	2.0	
7	SS2WB62007A	
8.5	SS2WB62008A	
10	SS2WB62010A	
11.5	SS2WB62011A	
13	SS2WB62013A	

Р	ø 6.0	
D	ø 7.0	
L G/H	2.0	
7	SS2WB72007A	
8.5	SS2WB72008A	
10	SS2WB72010A	
11.5	SS2WB72011A	
13	SS2WB72013A	

SSIII RBM Fixture

SSIII RBM Fixture Order Code

Fixture Only

- Fixture : Product Code (ex : SS3R4011R18)

Pre-Mounted Fixture (Simple Mount)

- Fixture + Simple Mount + Cover Screw : A + Fixture Product Code (ex : ASS3R4011R18)

Feature of SSIII Fixture

- Internal octa non-submerged fixture
- Taper body offers excellent primary bonding
- Corkscrew Thread & Cutting Edge
- Powerful self threading
- Change path easily
- Increased insertion torque in soft bone
- Increased initial stability in soft bone
- RBM surface with excellent bio-affinity
- Limited insertion torque : 40 Ncm
- Able to have primary bonding for immediate loading in soft bone
- In variable oral environment

* We recommend that the fixture with over 4.5mm diameter is used for single case in Molar

OSSTEM IMPLANT SYSTEM

Р	ø 4.8	
D	ø 4.0	
L G/H	1.8	2.8
7	SS3R4007R18	-
8.5	SS3R4008R18	SS3R4008R28
10	SS3R4010R18	SS3R4010R28
11.5	SS3R4011R18	SS3R4011R28
13	SS3R4013R18	SS3R4013R28
15	SS3R4015R18	SS3R4015R28

Р	ø 4.8	
D	ø 4.5	
L G/H	1.8	2.8
7	SS3R4507R18	-
8.5	SS3R4508R18	SS3R4508R28
10	SS3R4510R18	SS3R4510R28
11.5	SS3R4511R18	SS3R4511R28
13	SS3R4513R18	SS3R4513R28
15	SS3R4515R18	SS3R4515R28

Р	ø 6.0	
D	ø 4.5	
L G/H	2.0	
7	SS3W4507R20	
8.5	SS3W4508R20	
10	SS3W4510R20	
11.5	SS3W4511R20	
13	SS3W4513R20	
15	SS3W4515R20	

Р	ø 6.0	
D	ø 5.0	
L G/H	2.0	
7	SS3W5007R20	
8.5	SS3W5008R20	
10	SS3W5010R20	
11.5	SS3W5011R20	
13	SS3W5013R20	
15	SS3W5015R20	

SSIII SA Fixture

Simple Mount System

SSIII SA Fixture Order Code

Fixture Only

- Fixture : Product Code (ex : SS3R4011S18)

Pre-Mounted Fixture (Simple Mount)

- Fixture + Simple Mount + Cover Screw : A + Fixture Product Code (ex : ASS3R4010S18)

SSIII SA Fixture 특징

- Non-submerged type implant based on a one-stage surgery procedure
- Stable connection structure of internal octa and morse taper method
- SA surface morphology and roughness increased by45% compared to **RBM** treatment
- SA : Sand blasted with alumina and Acid etched surface
 - Optimal morphology : Combination of crater and micro-pit - Optimal surface roughness : Ra 2.5~3.0µm
 - Early cell response : 20% faster than RBM
 - Early bone healing : 20% faster than RBM

 - Early loading possible after 6 weeks of placement.
 - Optimized design for SA surface
- Taper body offers High initial stability
- Increase initial stability in soft bone
- Corkscrew thread : Powerful Self threading
- Limited insertion torque : 40Ncm

% We recommend that the fixture with over 4.5mm diameter is used for single case in Molar.

* Note : Short implant require sufficient curing period and, in the process of prosthesis, should be used splinting with another implant.

OSSTEM IMPLANT SYSTEM

Р	ø 4.8	
D	ø 3 .5	
L G/H	1.8	2.8
7	-	-
8.5	SS3R3508S18	SS3R3508S28
10	SS3R3510S18	SS3R3510S28
11.5	SS3R3511S18	SS3R3511S28
13	SS3R3513S18	SS3R3513S28

Р	ø 4.8			
D	ø 4.0			
L G/H	1.8 2.8			
7	SS3R4007S18	-		
8.5	SS3R4008S18	SS3R4008S28		
10	SS3R4010S18	SS3R4010S28		
11.5	SS3R4011S18	SS3R4011S28		
13	SS3R4013S18	SS3R4013S28		

Р	ø 4.8			
D	ø 4.5			
L G/H	1.8 2.8			
7	SS3R4507S18	-		
8.5	SS3R4508S18	SS3R4508S28		
10	SS3R4510S18	SS3R4510S28		
11.5	SS3R4511S18	SS3R4511S28		
13	SS3R4513S18	SS3R4513S28		

Р	ø 6.0
D	ø 4.5
L G/H	2.0
7	SS3W4507S20
8.5	SS3W4508S20
10	SS3W4510S20
11.5	SS3W4511S20
13	SS3W4513S20

Р	ø 6.0	
D	ø 5.0	
L G/H	2.0	
6 (Short)	SS3W5006S20	
7	SS3W5007S20	
8.5	SS3W5008S20	
10	SS3W5010S20	
11.5	SS3W5011S20	
13	SS3W5013S20	

Simple Mount Ø3.5 Ø4.8 Ø6.0 PERCENT. 1000 HTT.

Platform	ø 3.5	ø 4.8		0 0 4.8 Ø 6.0			6.0
Code	ESFMM	ISFM480	SSSRG	ISFM600	SSSWB		

- Color indication facilitates the identification in the oral cavity
- Use a 1.2 hex driver to remove screws Packing unit : Mount + Mount Screw
- Tightening torque : 8-10 Ncm

M R W Fixture Platform

Cover Screw

Platform	ø 3 .5	ø 4.8	ø 6.0
Code	SGCM100	SSCS480	SSCS600

- Use 0.9 (mini) and 1.2 (regular and wide) hex drivers
- Packing unit : Cover Screw
- Tightening torque : 5-8 Ncm

Headless Cover Screw

Platform	ø 3.5	ø 4.8	ø 6.0
Code	HCM100	-	-

- 0.9

- Use for limited proximal space or suturing with deficient gingiva
- Use a 0.9 hex driver
- Packing unit : Headless Cover Screw
- Tightening torque : 5~8Ncm

OSSTEM IMPLANT SYSTEM

latform	ø 4.8	ø 6.0
Code	SSCS480N	SSCS600N

• Use for limited proximal space or suturing with deficient gingiva • Use a 1.2 hex driver

• Packing unit : Closing Screw

• Tightening torque : 5-8 Ncm

Platform	ø 4.8	ø 6.0
2.0	SSH482	-
3.0	SSH483	SSH603
4.0	SSH484	SSH604
5.0	SSH485	SSH605

• Use a 1.2 hex driver

• Packing unit : Healing Abutment

• Tightening torque : 5-8 Ncm

Solid Abutment Components

ø 4.8			ø 6.0			
						∎ ∎
4.0	5.5	7.0	4.0	5.5	7.0	

H	ø 4.8	ø 6.0
4.0	SSS484	SSS604
5.5	SSS485	SSS605
7.0	SSS487	SSS607

• Use for making general cement-type prosthesis.

- Abutment and screw in one
- 8° Morse taper design with stable connection
- Cross-section design for the prevention of prosthesis rotation
- Ø 4.8 : Use a solid abutment driver.
- Ø 6.0 : Use a 1.2 hex driver.
- Packing unit : Abutment + Healing cap
- Tightening torque : 30 Ncm
- Order code Abutment + Healing cap : Product code + P (ex : SSS485P)

R

W Fixture Platform

Solid Protect Cap

Solid Abutment

Cement Retained Restoration

ø 4.8			ø 6.	0			
							н Т
4.0	5.5	7.0	4	.0	5.5	7.0	

Platform	ø 4.8	ø 6.0	
4.0	SSC484	SSC604	
5.5	SSC485	SSC605	
7.0	SSC487	SSC607	

• Use for the protection of solid abutments in the oral cavity and to minimize the patient's discomfort.

- Applicable as a substructure of temporary prosthesis
- Convenient locking

н

• Packing unit : Protect Cap

Solid Retraction Cap

H	ø 4.8	ø 6.0
4.0	SSSRC484	SSSRC604
5.5	SSSRC485	SSSRC605
7.0	SSSRC487	SSSRC607

Packing unit : Retraction cap

• Possible to take impression in accuracy for margin

OSSTEM IMPLANT SYSTEM

Platform	ø 4.8	ø 6.0	
4.0	SSIC484	SSIC604	
5.5	SSIC485	SSIC605	
7.0 SSIC487		SSIC607	

• Solid abutment component for taking an impression • Color indication enables the easy identification of abutments of varying lengths 4.0mm(Yellow), 5.5mm(Gray), 7.0mm(Blue)

Packing unit : Impression Coping

 Solid Positioning Cylinder + Solid Impression Cap = Solid Impression Coping

Platform	ø 4.8	ø 6.0	
4.0	SSSA484	SSSA604	
5.5	SSSA485	SSSA605	
7.0 SSSA487		SSSA607	

• Make aesthetic oral abutments on the working model • Small groove for indication of G/H

• Color-coding enables the easy identification of abutments of varying lengths 4.0mm(Yellow), 5.5mm(Gray), 7.0mm(Blue)

Packing unit : Lab Analog

Platform	ø 4.8	ø 6.0
Single	SSSP480S	SSSP600S
Bridge	SSSP480B	SSSP600B

• Use as a framework of prosthesis by connecting to solid lab analogs • Color indication facilitates the identification of different cases Single (Red color), Bridge (White color)

• After prosthetic casting, the margin may be adjusted by a special-purpose

• Packing unit : Plastic Coping

Solid Impression Cap

ø 4.8 ø 6.0

	Platform	ø 4.8	ø 6.0	
Code		SSIP480	SSIP600	
Solid abutment components for taking an impression				

- Use by connecting to solid positioning cylinders.
- Convenient locking
- Packing unit : Impression Cap

Excellent Solid Abutment Components

Solid Shoulder Analog

Platform	ø 4.8	ø 6.0	
Code	SSSLA480	SSSLA600	

- Impression components used for cutting solid abutment
- Make a fixture platform on the working model

Packing unit : Shoulder Analog

Excellent Solid Protect Cap

Solid Shoulder Analog Pin

Platform	ø 4.8	ø 6.0	
Code	SSSAP480	SSSAP600	

- Impression components used for cutting solid abutments
- Use by connecting to solid shoulder analogs
- Supplementary component for preventing fracture on a working model
- Packing unit : Shoulder Analog Pin

Platform	ø 4.8	ø 6.0	
4.0	SSE484	SSE604	
5.5	SSE485	SSE605	
7.0	SSE487	SSE607	

• Advantageous for the modification of abutments into larger volume than solid abutments

• Abutment and screw in one

• 8° Morse taper design with stable connection

• Cross-section design for the prevention of prosthesis rotation

• ø 4.8 : Use an Excellent Solid abutment driver.

ø 6.0 : Use a 1.2 hex driver.

• Packing unit : Abutment + Protect Cap

• Tightening torque : 30 Ncm

Order code - Abutment + Healing cap: Product code + P (ex : SSE485P)

Platform	ø 4.8	ø 6.0
4.0	SSEC484	SSEC604
5.5	SSEC485	SSEC605
7.0	SSEC487	SSEC607

• Use for the protection of Excellent Solid abutments in the oral cavity and to minimize the patient's discomfort

• Applicable as a substructure of temporary prosthesis

Convenient locking

• Packing unit : Protect Cap

Platform	ø 4.8	ø 6.0
4.0	SSERC484	SSERC604
5.5	SSERC485	SSERC605
7.0 SSERC487		SSERC607

Packing unit : Retraction cap

• Possible to take impression in accuracy for margin

Excellent Solid Impression Coping ø 4.8 ø6.0

ľ	Ħ	Ī	H	Ŧ	Ŧ
4.0	5.5	7.0	4.0	5.5	7.0

H	ø 4.8	ø 6.0
4.0	SSEIC484	SSEIC604
5.5	SSEIC485	SSEIC605
7.0	SSEIC487	SSEIC607

• Excellent Solid abutment component for taking an impression

• Color indication enables the easy identification of abutments of

varying lengths

- 4.0mm(Yellow), 5.5mm(Gray), 7.0mm(Blue) • Packing unit : Impression Coping
- Excellent Solid Positioning Cylinder + Excellent Solid Impression Cap = Solid Impression Coping

W Fixture Platform

R

•	E>	kcel	le

Excellent Solid Lab Analog

H Platform	ø 4.8	ø 6.0
4.0	SSEA484	SSEA604
5.5	SSEA485	SSEA605
7.0	SSEA487	SSEA607

- Make aesthetic oral abutments on the working model
- Small groove for indication of G/H
- Color-coding enables the easy identification of abutments of varying lengths
- 4.0mm(Yellow), 5.5mm(Gray), 7.0mm(Blue)
- Packing unit : Lab Analog

Platform	ø 4.8	ø 6.0		
Code SSELA480 SSELA600				
Impression components used for cutting Excellent Solid abutments Make a fixture platform on a working model				

Excellent Solid Plastic Coping

TypePlatformØ 4.8Ø 6.SingleSSEP480SSSEP6BridgeSSEP480BSSEP6				
SingleSSEP480SSSEP6BridgeSSEP480BSSEP6	.0			
Bridge SSEP480B SSEP6	300S			
	300B			
 Use as a framework of prosthesis by connecting with Excellent Solid lab analogs Color indication facilitates the identification of different cases Single (Red color), Bridge (White color) After prosthetic casting, the margin is adjusted by a special-purpose 				

• Packing unit : Plastic Coping

OSSTEM IMPLANT SYSTEM

Platform	ø 4.8	ø 6.0
Code	SSEIP480	SSEIP600

llent Solid abutment component for taking an impression • Use by connecting to Excellent Solid positioning cylinders Convenient locking

Packing unit : Impression Cap

• Packing unit : Shoulder Analog

Platform	ø 4.8	ø 6.0
Code	SSEAP480	SSEAP600

• Impression components used for cutting Excellent Solid abutments • Use by connecting to Excellent Solid shoulder analogs • Supplementary components for preventing fracture on a working model Packing unit : Shoulder Analog Pin

ComOcta Abutment

Cement Retained Restoration

Platform		ø 4.8	
Н		Octa	Non-Octa
4.0		SSCA484	SSCA484N
5.5		SSCA485	SSCA485N
7.0		SSCA487	SSCA487N
Sorow	Ti	ASR200*	
Screw	EbonyGold	ASR200W	

Platform		ø 6.0	
Н		Octa	Non-Octa
4.0		SSCA604	SSCA604N
5.5		SSCA605	SSCA605N
7.0		SSCA607	SSCA607N
Screw	Ti	ASR200*	
Sciew	EbonyGold	ASR200W	

• Use for making general cement-type prosthesis

• Cross-section design for the prevention of prosthesis rotation

- 8° Morse taper design with stable connection
- Use a 1.2 hex driver
- Packing unit : Abutment + Ti screw
- Tightening torque : 30 Ncm

Order code - Abutment + Ti screw: Product code + TH (ex : SSCA485TH)

* EbonyGold Screw : Can be purchased separately

G/H	Platform	ø 4.8	ø 6.0
2.0		SSCAP4826C	SSCAP6026C
4	.0	SSCAP4846C	SSCAP6046C
Sorow	Ti	ASR	200*
Sciew	EbonyGold	ASR	200W
 Use for thick gingiva and in case of deeply grafted fixtures Gingival gold color for aesthetic effect Shoulder contact with the fixture platform Use a 1.2 hex driver Packing unit : Abutment + Ti screw Tightening torque : 30 Ncm 			
Order code - Abutment + Ti screw : Product code + TH (ex : SSCAP4826CTH)			

* EbonyGold Screw : Can be purchased separately

ComOcta Gold Abutment

(Octa)

(Octa)

ø**4.8**

ø6.0

Screw or Cement Retained Restoration

1000

(Non-Octa)

(Non-Octa)

1.2

6

1.2

6

1.2

Screw

Туре

N

latform		ø 4.8	ø 6.0	
Code		SSHM480C	SSHM600C	
	Ti	SSHAS		

• Packing unit : Abutment + Ti Screw + Mount Screw

• 3 functions : fixture mount, transfer impression coping, abutment • For use as an abutment, be sure to use only special-purpose screw

- Shoulder contact with the fixture platform
- Gold color for aesthetic effect
- Use a 1.2 hex driver
- Tightening torque : 30 Ncm

Order code - Abutment + Ti Screw + Mount Screw : Product Code + TH (ex : SSHM480CTH)

Platform		ø 4.8	ø 6.0
15°		SSA4815	SSA6015
20°		SSA4820	SSA6020
	Ti	ASS200*	
	EbonyGold	ASS2	200W

• Use for the path adjustment of prosthesis.

• 8° Morse taper design with stable connection

• Since screw loosening occurs somewhat frequently, EbonyGold screw is recommended

• Use a 1.2 hex driver

• Packing unit : Abutment + Ti Screw

• Tightening torque: 30 Ncm

Order code - Abutment + Ti screw : Product code + TH (ex : SSA4815TH)

* EbonyGold Screw : Can be purchased separately

Platform		ø 4.8	ø 6.0
Octa		COG480S	COG600S
on-Octa		COG480B	COG600B
	Ti	ASR200*	
	EbonyGold	ASR200W	

• Use for cases with path and aesthetic and spatial constraints

• Shoulder contact with the fixture platfrom

• After customization, be sure to use only dental gold alloy for casting to make the prosthesis

• Melting point range of abutments (Au, Pt, Pd Alloy) : 1400 - 1450C

(use of non-precious metal alloy for casting prohibited)

• Use non-Octa type for an excessively dislocated path

• Use a 1.2 hex driver

• Packing unit : Abutment + Ti Screw

• Tightening torque : 30 Ncm

Order code - Abutment + Ti screw : Product code + TH (ex : COG480STH)

* EbonyGold Screw : Can be purchased separately

ø 6.0

(Octa)

1.2 6

(Non-Octa)

Type Platform	ø 4.8	ø 6.0	
Octa	CON480S	CON600S	
Non-Octa	CON480B	CON600B	
Screw Ti	ASR	200	
 Use for cases with path and aesthetic and spatial constraints Shoulder contact with the fixture platfrom After customization, be sure to use only dental non-precious metal alloy for casting to make the prosthesis Use non-Octa type for an excessively dislocated path Use a 1.2 hex driver Tightening torgue : 30 Ncm 			

Order code - Abutment + Ti Screw : Product Code + TH (ex : CON480STH)

Platform	ø 6.0	
G/H Type	Octa	Non-Octa
0	SSTAO600	SSTAN600
2	SSTAO602	SSTAN602
Ti Screw	ASR200	

• Use to make a tomporary prosthetics.

- Easy to customize & Minimize limitation for indicant
- Use a 1.2 hex driver
- Packing unit : Abutment + Ti Screw
- Tightening torque : 20 Ncm

Order code - Abutment + Ti Screw : Product Code + TH (ex : SSTAO480TH)

R

W Fixture Platform

Fixture Transfer Impression Coping

ø6.0

Fixture Lab Analog

ø4.8

L

9.5

0 2 0 2 (Octa) (Non-Octa)

ComOcta Temporary Abutment

Screw Retained Restoration

ø6.0

ø4.8

OSSTEM IMPLANT SYSTEM

Platform		ø 4.8	ø 6.0	
Octa		SSICA480	SSICA600	
on-Octa		SSICA480N	SSICA600N	
. 10		CSR100		
'n	15	CSR150*		
	17	CSR170		

• Pick-up type for taking an impression using a customized tray • Impression coping designed with Hole-in-one ; no need for resin fixation • Asymmetrical structure minimizing contact interference (• Packing unit : Impression Coping Body + Guide Pin

Type	ø 4.8	ø 6.0
Octa	SSCTIS480	SSCTIS600
Non-Octa	SSCTIS480N	SSCTIS600N
Octa	SSCTIL480	SSCTIL600
Non-Octa	SSCTIL480N	SSCTIL600N

• Transfer type for taking an impression using a ready-made tray ullet Triangular arc (\bigcirc) design improves markability following impression • Long and short types enhance convenience

• The hex type is designed as a two-piece, and the non-hex type, as a one-

• Packing unit : Impression Coping Body + Guide Pin (Octa) Impression Coping (Non-Octa)

Platform	ø 4.8	ø 6.0
Code	SSFA480	SSFA600

• Oral fixtures are built on the working model

• Small Groove for indication of G/H

• Color-coding enables the easy identification of platform size of varying lengths ø 4.8(Green), ø 6.0(Blue)

Packing unit : Lab Analog

Screw Retained Restoration ø4.8 ø6.0

Octa Abutment

Octa	Protect	Can
Octa	FIOLECL	Oap

Octa Gold Cylinder

12

6

1.2

ø 6.0

Platform	ø 4.8	ø 6.0
Code	SSOA480	SSOA600

- Use for a path-dislocated bridge to make screw-retained prosthesis • Designed to make the prosthesis onto a cylinder following abutment
- connection in the oral cavity
- Use an Octa abutment driver
- Packing unit : Abutment
- Tightening torque : 30 Ncm

Platform	ø 4.8	ø 6.0
Code	SSHC480	SSHC600
Ti Screw	SSFS	

- Use for the protection of Octa abutments in the oral cavity and to minimize the patient's discomfort
- Use a 1.2 hex driver
- Packing unit : Protect Cap + Ti Screw
- Tightening torque : 20Ncm

Order code - Protective Cap + Ti Screw : Product code + TH (ex : SSHC480TH)

Туре	Platform	ø 4.8	ø 6.0
Oc	ota	SSGCO480	SSGCO600
Non-	Octa	SSGCN480	SSGCN600
Screw	Ti	SSFS*	
Sciew	EbonyGold	SSFSW	

- After customization, be sure to use only dental gold alloy for casting to make the prosthesis
- Melting point range of cylinder (Au, Pt, Pd Alloy) : 1400 -1450°C
- (use of non-precious metal alloy for casting prohibited)
- Use a 1.2 hex driver
- Packing unit : Cylinder + Ti Screw
- Tightening torque : 20 Ncm

Order code - Cylinder + Ti screw : Product code + TH (ex : SSGCO480TH)

* EbonyGold Screw : Can be purchased separately

W Fixture Platform

R

Combination & Temporary Cylinder

- Use a 1.2 hex driver

Octa Temporary Cylinder

ø 6.0

Gold Cylinder

44

1.2

OSSTEM IMPLANT SYSTEM

Platform Ø 4.8 Ø 6.0 Code SSOCC480 SSOCC600 Screw Ti SSFS* EbonyGold SSFSW SSFSW • Make a combination retained prosthetics to use octa abutment • The connection to have two advantage octa and Non-octa (Max, path compensation 60°) • Octa abutment					
Code SSOCC480 SSOCC600 Screw Ti SSFS* EbonyGold SSFSW • Make a combination retained prosthetics to use octa abutment • The connection to have two advantage octa and Non-octa (Max, path compensation 60°)	Platform		ø 4.8	ø 6.0	
Ti SSFS* EbonyGold SSFSW • Make a combination retained prosthetics to use octa abutment • The connection to have two advantage octa and Non-octa (Max, path compensation 60°)	Code		SSOCC480	SSOCC600	
EbonyGold SSFSW Make a combination retained prosthetics to use octa abutment The connection to have two advantage octa and Non-octa (Max, path compensation 60°)	Sorou	Ti	SS	SSFS*	
 Make a combination retained prosthetics to use octa abutment The connection to have two advantage octa and Non-octa (Max, path compensation 60°) 	EbonyGold		SSFSW		
Use a 1.2 hex driver Packing unit : Abutment + Ti screw Tightening terrup : 20 Nom					

Order code - Cylinder + Ti Screw : Product Code + TH (ex : SSOCC480TH)

* EbonyGold Screw : Can be purchased separately

Platform	ø 4.8	ø 6.0
0	SSTCO480	SSTCO600
2	SSTCO482	SSTCO602
Ti Screw	SSFS	

• Use to make a temporary prosthetics.

• Easy to customize & Minimize limitation for indicant

• The connection to have two advantage octa and Non-octa

(Max. path compensation 60°)

• Packing unit : Abutment + Ti screw

• Tightening torque : 20 Ncm

Order code - Cylinder + Ti Screw : Product Code + TH (ex : SSTCO480TH)

(Non-Octa)

(Non-Octa)

1.2

1.2

1.2

1.2

Octa Plastic Cylinder

(Octa)

(Octa)

ø 6.0

Platform ø 4.8 ø 6.0 SSPSO480 SSPSO600 Octa Non-Octa SSPSN480 SSPSN600 Ti Screw SSFS

• After customization, casting should be performed with dental alloy (gold, non-precious metal) to make the prosthesis

- The precision of the connection part is lower compared to gold cylinders
- Use a 1.2 hex driver
- Packing unit : Cylinder + Ti Screw
- Tightening torque : 20 Ncm

Order code - Cylinder + Ti screw : Product code + TH (ex : SSPSO480TH)

Octa Lab Analog

ø6.0

ø4.8 (Octa) (Non-Octa) ø 6.0

(Octa)

(Non-Octa)

Platform		ø 4.8	ø 6.0
Octa		SSICO480	SSICO600
Non-Octa		SSICN480	SSICN600
Guide Pin (L)	10	SSGS	\$100
	15	SSGS150*	

• Pick-up type for taking an impression using a customized tray

• Impression coping designed with Holinone ; no need for resin fixation

- Asymmetrical structure minimizing contact interference (
- Packing unit : Impression Coping Body + Guide Pin

46

OSSTEM IMPLANT SYSTEM

Platform	ø 4.8	ø 6.0
Code	SSOTI480	SSOTI600

• Transfer type for taking an impression using a ready-made tray • Packing unit : Impression Coping Body + Guide Pin

Platform	ø 4.8	ø 6.0
Code	SSLA480	SSLA600

• Make aesthetic oral abutments on the working model

• Small groove for indication of G/H

• Color-coding enables the easy identification of abutments of varying lengths ø 4.8(Green), ø 6.0(Blue)

Packing unit : Lab Analog

O-ring System

балн

O-ring Abutment Overdenture Restoration

	Platform	
G / H	ø 4.8	
0	SSRA000	
2	SSRA200	
4	SSRA400	

• Packing unit : Only Abutment

O-ring Retainer Cap Set

W Fixture Platform

R

O-ring Retainer Set

12:4:22

4

O-ring Abutment Set (Dalbo Set) Overdenture Restoration

	Platform	
G / H	ø 4.8	
0	SSRA000D	
2	SSRA200D	
4	SSRA400D	

- Use for making stud-type overdenture
- Superior stability of retention force vs. O-ring
- Dalbo plus attachment components
- Compensate the retention force through internal lamella rotation
- (clockwise) using a special-purpose driver
- Maximum path compensation of 20°
- Use an O-ring abutment driver
- Packing unit : Abutment + Dalbo plus attachments
- Tightening torque : 30Ncm

O-ring Set (for Laboratory)

OSSTEM IMPLANT SYSTEM

Code

RCS01

Code

RS01

• More advantageous for smaller occlusal gap compared to a retainer cap • Packing unit : Retainer + O-ring

Code

OAON01S

• Packing unit : O-ring 5 piece

LOCATOR[®] Components

51

LOCATOR[®] Replacement Male

	Platform	
G / H	ø 4.8	
0.7	HSLCA4810R	
2	HSLCA4820R	
3	HSLCA4830R	
4	HSLCA4840R	

• Packing Unit : Locator Abutment

• Stable dual retention & optimal holding capabilities against various retention forces (6N, 12N, 22N)

• Excellent durability

• Possible denture restorations even at small vertical dimension

• Accommodate up to 40° divergence between two implants

• Retention males can be easily placed & removed with core tool

Tightening torque : 30Ncm

• Can be used in SS system & HS system

Code

LMPS

• Packing Unit : Locator Male Processing Kit (2 Set)

-Block out Spacer/Denture Cap connected Black Processing Male

-Replacement Male Blue/Pink/Clear

• Male Change by Locator Core Tool

Code

LRM06S

• Packing Unit : Blue Replacement Male (4ea) retention Force : about 6N

• 0°~20° divergence (between two implants)

Code LRM12S

• Packing Unit : Pink Replacement Male (4ea) • retention Force : about 12N • 0°~20° divergence (between two implants)

Code

LRM22S

• Packing Unit : clear Replacement Male (4ea) • retention Force : about 22N • 0°~20° divergence (between two implants)

SS S

			R W Fixture Platform		OSSTE	M IMPLANT SYSTEM
I OCATOR [®] Extended Benlacement Male	0.4	151/000		0.4		1007
	CodeLEM06S• Packing Unit : Red Extended Replacement Male (4ea)• retention Force : about 6N• 20°~40° divergence (between two implants)			Code Packing Unit : Locator (foe handling of locator s	Core Tool system	
	Code	LEM12S				
	 Packing Unit : Green Extended Rep retention Force : about 12N 20°~40° divergence (between two in 	lacement Male (4ea) nplants)	LOCATOR [®] Torque Driver	Type Code • Packing Unit : Locator 7	Short TWLDS	Long TWLDL
LOCATOR [®] Black Processing Male	Code	LBPS	T Î	 For tightening of Locato Select the Short / Long 	ir Abutment length	
	 Packing Unit : black processing Ma for lab. process 	le (4ea)	107 107			
LOCATOR [®] Block out spacers	Code	LBSS				
	 Packing Unit : Locator Block out sp For Space Sealing between Locator 	acers (20ea) r Abutment & Denture Cap				
LOCATOR [®] Impression Coping	Code	LICS				
	 Packing Unit : Locator Impression C For Abutment level impression 	Coping (4ea)				
LOCATOR [®] lab Analog	Code	LAL40S LAL50S				
	• Packing Unit : Locator lab Analog (4ea)				

